Consistent distributed state estimation with global observability over sensor network
نویسندگان
چکیده
This paper studies the distributed state estimation problem for a class of discrete time-varying systems over sensor networks. Firstly, it is shown that a networked Kalman filter with optimal gain parameter is actually a centralized filter, since it requires each sensor to have global information which is usually forbidden in large networks. Then, a sub-optimal distributed Kalman filter (DKF) is proposed by employing the covariance intersection (CI) fusion strategy. It is proven that the proposed DKF is of consistency, that is, the upper bound of error covariance matrix can be provided by the filter in real time. The consistency also enables the design of adaptive CI weights for better filter precision. Furthermore, the boundedness of covariance matrix and the convergence of the proposed filter are proven based on the strong connectivity of directed network topology and the global observability which permits the sub-system with local sensor’s measurements to be unobservable. Meanwhile, to keep the covariance of the estimation error bounded, the proposed DKF does not require the system matrix to be nonsingular at each moment, which seems to be a necessary condition in the main DKF designs under global observability. Finally, simulation results of two examples show the effectiveness of the algorithm in the considered scenarios.
منابع مشابه
Rcd Rules and Power Systems Observability
Power system state estimation is a process to find the bus voltage magnitudes and phase angles at every bus based on a given measurement set. The state estimation convergency is related to the sufficiency of the measurement set. Observability analysis actually tests this kind of problem and guarantees the state estimation accuracy. A new and useful algorithm is proposed and applied in this pape...
متن کاملKullback-Leibler Divergence Based Distributed Cubature Kalman Filter and Its Application in Cooperative Space Object Tracking
In this paper, a distributed Bayesian filter design was studied for nonlinear dynamics and measurement mapping based on Kullback–Leibler divergence. In a distributed structure, the nonlinear filter becomes a challenging problem, since each sensor cannot access the global measurement likelihood function over the whole network, and some sensors have weak observability of the state. To solve the p...
متن کاملTracking performance of incremental LMS algorithm over adaptive distributed sensor networks
in this paper we focus on the tracking performance of incremental adaptive LMS algorithm in an adaptive network. For this reason we consider the unknown weight vector to be a time varying sequence. First we analyze the performance of network in tracking a time varying weight vector and then we explain the estimation of Rayleigh fading channel through a random walk model. Closed form relations a...
متن کاملDistributed Input and State Estimation Using Local Information in Heterogeneous Sensor Networks
A new distributed input and state estimation architecture is introduced and analyzed for heterogeneous sensor networks. Specifically, nodes of a given sensor network are allowed to have heterogeneous information roles in the sense that a subset of nodes can be active (that is, subject to observations of a process of interest) and the rest can be passive (that is, subject to no observation). Bot...
متن کاملObservability-Enhanced PMU Placement Considering Conventional Measurements and Contingencies
Phasor Measurement Units (PMUs) are in growing attention in recent power systems because of their paramount abilities in state estimation. PMUs are placed in existing power systems where there are already installed conventional measurements, which can be helpful if they are considered in PMU optimal placement. In this paper, a method is proposed for optimal placement of PMUs incorporating conve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.04993 شماره
صفحات -
تاریخ انتشار 2017